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Abstract

Models of coin-tossing have been considered both in their own aspect or as

specialized Markov chains. -A common reference for both approaches is still William

Feller's Introduction to Probability Theory and its Applications, vol. 1, 1968-. A typical

model calls for tossing a (biased) coin until a certain well defined stopping event, the

"target,* terminates the tossing; the random variable of interest, the "tally," is the

number of tosses.

The stopping e~ents in Feller and in most other references are of two sorts:

(a) A string of heads or tails of fixed size and order, e.g. hhhh, or ttttt, or

ththht, etc.; or

(b) A string of r beads or of tails, which ever shows up first.

A solution is usually given as a generating function for the number of tosses; this

may require tedious algebraic and numerical work in determining the distribution and

moments. / .

In-this Report w6 extend, the Feller-type models in several ways, all believed to be

new: .

(I)--W'allow, 'target event of variable length, e.g. h-odd # tails -h.

(2) We allow-ally variables other than number of tosses, e.g. number of heads,

number of tails, number of runs, number of doublets ht on way to the

stopping event, etc.

(3) We tilowvector-valued tallies, e.g. a vector composed of the number of

heads, number of tails, number of runs, and number of triplets hht; our

solution provides joint and marginal distributions, and mixed moments of the

various components,

(4) 'A central result shows how to mechanically transform an existing solution

(usually in the form of a generating function) for the number of tosses into a

joint solution for the number of heads and tails. : We need not even know the

model to which the original solution refers. This result is of both practical

and methodological interest because there are many coin-tossing problems

worked out for various models in the literature, and these solutions can be

transformed into joint head-and-tail solutions with minimal effort. There is 0l -.

an indication that such transpositions can be of value in inferential statistics.

(5) We have made a beginning, towards expressing the tally process in terms of , ,-

simpler building blocks, in particular geometric random variables.
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(6) We show how jn many instances a tossing model can be solved from the

knowledge of several initial probabilities but some more work remains to be

done to develop this method, which is essentially the method of indetermined

coefficients.
Feller and most authors base their derivations on probability distributions, whereas

we base ours on random variables and their general functionals. Probability densities

and distributions, moments and generating functions are instances of such functionals.
Our notation is suitable for sums and linear combinations, including convex

combinations, of random variables, and in particular for tree structures because these
tend to be rich in recursions. This notation has been referred to as the omni-notation,
and out method as the omni-method. The gist of the method consists in formulating
the equations of mixtures and balances for an arbitrary functional of the random
process of interest in place of the random process itself. This arbitrary functional can
also be defined as the expectation of an arbitrary function of a random process, as we

-have done in other contexts including queueing theory. We refer to either definition as
the omni-transform of the process.

* The resulting equations are called omni-equations, and they can be specialized to
distributions and generating functions, moments, costs, Pr(Z-n, modulo j) for the
process or random variable z, and to other functionals. Examples of such
specialization are provided as well as examples of transposing generating functions into

-t their own omni-equivalents. The simplest and most economical way of deriving the
moments of a tally variable with a known generating function is usually to first ?

transpose this function into an omni-equation and then to find the moments

algebraically or numerically.

We give examples where the omni-method applies easily whereas generating
functions are cumbersome to use, e.g. the random variable "number of heads minus
number of tails," which ranges over positive and negative integers, and costs which P.
range over fractions, both positive and negative. As an indication of the power of our

approach, finding the probability that the "number of heads minus number of tails" is
an odd integer upon reaching the target hhh is a rather onerous combinatorial problem
which reduces to several lines when using the omni-method.

Some of our results, in particular the costing applications, are applicable to more
general Markov and semi-Markov chains, but this topic must be left to a future report.
An attentive reader should be able, however, to make such an application by oneself.
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Introduction

Various examples of coin-tossing models are discussed in Feller (1968). These S

models call for tossing a coin until a certain target event shows up; the random
variable of interest is the number of tosses. The target events are of two kinds:

(a) a string of fixed length of heads and tails in a fixed order, in particular a string of

heads only or a string of tails only; and (b) a string of r heads or p tails, whichever
shows up first. The solution is given generally in the form of a generating function for
the number of tosses.

In this report we extend these models in several ways:i- 
i

(1) We allow target events of variable length, e.g. h-odd #tails-h (where h stands for
heads and t for tails);

(2) We allow tally variables other than the number of tosses, e.g. number of heads,
number of tails, number of runs, number of doublets ht on way to targets, and
others, in particular cost of tossing defined in various ways;

(3) We allow vectors of tally variables, e.g. vectors composed of number of heads,

number of tails and number of runs;
(4) We show how to modify an existing solution (e.g. in forms of a generating

function) for the number of heads into a bivariate solution for number of heads

and number of tails; this is of both methodological and practical interest since
there are in the literature various worked out solutions for the number of heads

for various targets;
(5) We have made a beginning towards expressing the tally process in terms of

simpler building blocks, in particular geometric random variables; and N

(6) We show how, in many cases, a tossing model can be solved from the knowledge
of several known initial probabilities, but more work remains to be done to extend
and justify the method.

Feller works primarily with distributions, we work mainly with random variables. The
notation we have introduced is suitable for sums and linear combinations, in particular
convex combinations, of random variables: the omni-functions and omni-equations.
However, an omni-equation can be as easily specialized to an equation in probability
distributions as into an equation for moments or for generating functions. We have
shown examples where the omni-method is easily applicable but generating functions
are difficult to use, e.g. for "number of heads minus number of tails," and for costing
variables which can be positive and negative and fractional.

.....



This report can be of independent interest but also an introduction to Markov
processes. The special structure of tossing models prompted us to prepare a separate .'

report on this topic.

We wish to add that the method of omni-equations was originally introduced in

connection with queueing problems (cf. Krakowski (July 1986, November 1986, 1987)).
But the quoted references are not a prerequisite for the present report. In fact, our

use of the omni-method is simpler than in queueing which involves differentiation of

omni-functions.

Notation
We list here the symbols used throughout most of the report. Some symbols used only

locally are for the most part omitted.

r.v. random variable

h : toss resulting in heads; k*h means k successive heads

V t toss resulting in tails; kt means k successive tails

gf generating function

p Pr(h), q = Pr (t)

N = number of tosses; N. = Pr(N=j)
JP

H number of heads; H = number of heads

T number of tails; N i number of tails

Nij = Pr(H=i,T=j)

r = number of reversals h -- t and t -, h; the number of runs is R=r+l IN

*(A) is an arbitrary function of A; *(A,B) is an arbitrary function of A and B

80(j) = 1 if j=O, and vanishes otherwise

6(ij)= 8(i)8(j) = I if i=j=O, and vanishes otherwise

E is the expectation operator

nX Ga is a geometric r.v. with parameter a, i.e. Pr(Ga=j)=a(1-a)j-1

The target event is the event which stops the tossing project. Thus saying that the
y.; target is hhth means that the tossing stops as soon as we hit hhth. A target need not

be of fixed length; it can be "h-odd # of t-h", or "hh or ttt whichever comes first".
A tossing model consists of a tally, which is a random variable or a random vector of
interest and a target; thus {H,T,r;hht} means that we stop tossing as soon as we hit hht
and we count the number of heads and the number of tails and the number of
reversals; clearly we are interested in the trivariate vector (H,T,r).

2

lil

VV VV



Omnni-Convention An omni-equation, e.g.

E*I(N) = p '*(2) + pqE*i(2+N) .iqE*(l+N)

can be written as

*()= p'i*(2) + pq*,(2+N) +q*,(1+N).

This means that, following the omni-convention, we omit the operator E fro the print
but retain it in our mind's eye. This convention adds to the brevity of the notation.
(It is analogous to Einstein's summation convention often used in tensor and matrix
calculus-expectation is a summation.)

Note: E*,(X), or *(X) in tht abbreviated notation, can be thought of as an arbitrary
functional of X. This simplifies, e.g., congruence equations such as (1.7)
below.

7NN
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Omni-Transforms and Omni-Equations

The expectation E*(Z) of an arbitrary well-behaved function of the random
variable Z will be called the omni-transform of Z. (For the models in this report,

functions with finite expectations are well-behaved but in other contexts, say in

queueing models, the existence of derivatives and their expectations is a condition of

good behavior.) It is the essence of the omni-method that, along with Z, one
considers all functions *(Z).

The simplest omni-equation is

E,(A) = E*(B) (a)

which says that the random variables A and B have the same distribution, be they

dependent or independent. If (a) holds, if X, is independent of A and X2 of B, and if

E*(X1 ) = Et*(X 2 ) then

E*I(A+Xl) = E,(B+X2 ) (b)

and this is usually written as

E*(A+X) = E*(B+X) (c)

Contrarywise, if (c) holds then so does (a). One has to be careful in (b) that X1 and
X2 are independent, respectively, of A and B. Thus one must not take X1 = X2 = -A

p and write (b) as

E*(A-A) = E*(B-A) = E*(O) (d)

What we said about the simplest omni-equation (a) holds for all omni-equations.

:;3
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Section 1. The Project (hJ

We start with the simplest project in coin-tossing: toss a (p,q) coin till the target h a
("heads") shows up.

The project {h) can be represented by the infinite tree of Fig. 1:

h h h

t t t Fig. 1.1
q q q

where p = Pr(h) and q = 1-p = Pr(t) in a single toss. We assume that successive

tosses are stochastically independent.

We now replace the above infinite tree by the finite recursion tree in Fig. 1.2.

(Since each link pointing towards h has probability p and each link pointing towards t

has probability q we can omit hte p's and q's from the diagrams.)

[h] stop [ ] denotes stop ' '.

(t) renewal ( ) denotes renewal Fig. 1.2 %

If we are interested in EN we read from Fig. 1.2 -. ,

EN p.1 + qE(1+N° ) (1.1)

where N* is the remaining numer of tosses following the renewal toss (t). Although N

and N" are dependenet (in fact N* is a subsequence of N) they are statistical replicas

of each and EN = EN*. Hence no confusion should result if we suppress the asterisk
in (1.1) and write it as

EN - p.1 + qE(1+N) (1.2)

From (1.2) we get /= 1/p.

Similarly, if we are interested in EN 2, we read from Fig. 1.2

EN2  p.12 + qE(1+N) 2  (1.2)

5
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Similarly for EN 3 or EN j . In fact for any arbitrary function *(N) of N we read _,from Fig. 1.2

E*tN = p*t(1) + qE*t(l+N) (1.3) ,
an omni-equation, so-called, for the model {N; h. The fmni-convention improves the

esthetics of the typography by removing the E but making it understood so that (1.3a)

says the same thing as (1.3).

aI,(N)= p*(1) + q*(l+N) (1.3a)

(Equation (1.3a)) can be also read as saying "the r.v. N is linear combination, with
respective coefficients p and q, of the r.v. 1 and the r.v. 1+N* where N* is a statistical
replica of N. Thus omni-equations provide a notation for sums and combinations (in

particular convex mixtures).

We will refer to E*(N) as the omni-transform of N. This transform derives its

flexibility from the arbitrariness of i( ); and its ease of operations from the fact that

expectations are simple to apply to sums and mixtures of r.v.'s.

By setting j(N) = zN we get from (1.3) or (1.3a)

EZN ; pZ + qzEzN

and

EzN = Pz (1.4) •

the gf of N.

By setting *(N) = 8(N-j), where (J) - 1 if j=O and *()=O otherwise, we obtain

Pr(N=j) = p Pr(l=j) + q Pr(l+N=j) (1.5)
.,-'.,

since E8(N-j) = Pr(N=j).

Denoting N. -Pr(N=j) we write (1.6) as

Nj = p8G-1) + qNj_1  (1.5a)

Of course we can read (1.5) directly from Fig. 1.2.

From (1.5a) we get successively N, = p, N 2 ; qp, N 3 = q 2p and N. = qJ p.

6
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Equation (1.5a) is recognized as the recursion of a geometric distribution with

parameter p; we denote the corresponding r.v. as G so that, as in (1.3a)

(G = p*(1) + q*(l+Gp) (1.6)

We can say that the N in (1.3) or (1.3a) satisfies

*(N) = *(GP) (1.6a)

By setting *(N) = -8(N-j-ik) we get from (1.5) the congruence equation

Pr(N-=j, mod k) = pPr(lmj, mod k) +

+ qPr(l+Nmj, mod k) (1.7)

Setting k=2 and j =1 in (1.7) we have, with '.

ot = Pr(Nsal, mod 2) = Pr(N is odd)

,= P1 + q(1-a)

and

Pr(N is odd) - (1.7a)
1 +q

The question suggests itself, Are there other r.v.'s whose omni-equations are

represented by the renewal tree of Fig. 1.2? Yes, there are, and this is a major reason

why this paper is written. We will say that suci r.v.'s are isographic with N with .

respect to the renewal tree of Fig. 1.2.

.*:; The Models {H; h}, {T; h), and {H,T; h} ".

Let H = number of heads among the N tosses (we know that H=1 but let go on with a

poker face as if we did not know it); and let T = number of tails among the N tosses.

Of course, H+T = N. The omni-equations for H and for T can be read off from the

tree of Fig. 1.2 which represents H and T as well as N. We thus obtain

,(H) = p,(1) + q*(H) (I.8a)

*(T) = p*(O) + qi '(+T) (1.8b)

7
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In fact, the vector (H,T) is also isographic with N with respect to the tree of Fig. 2.1 *1,

so that we can combine (1.8a) and (1.8b) into a single omni-equation for (H,T) in the

model {R, T; h): -

*(H,T) = p*(1,0) + q*t(H,1+T) (1.9)

We can also read off equation (1.9) directly from Fig. 1.2 rather than fuse (1.8a) and

(1.8b). Both methods are instructive.

When considered separately equation (1.8a) can be simplified to

(1-q),(H) = p(1), and since 1-q = p, to *(H) -

and so H = 1

as it ought to be. This result is not enlightening but reassuring as to the trustiness of

the method.

From (1.9) we can derive the joint distribution, the mixed moments and the joint

gf for (H,T). However, the outcome is known since H = 1. Such exercises are of

interest for more complex models where the results may be new.

Duration of the Toss Project. Another omni-equation which is isographic to N in Fig.

1.2 arises when we ascribe random durations to the tosses. Let

x = duration of an h-toss •

y = duration of a t-toss

T = aggregate duration of all tosses

From Fig. 1.2 we read .-

*"() = p*(x) + qi(y+Tr), (1.10)

a convolution equation for Tr. From (1.10) we can derive successive moments of t, the

Laplace transform of r, etc. The derivation of T is painless. With *(r) = r we get

T= R+ (.1

,, to derive the Laplace Transform for T let *(-r) = e-st. From (1.10) we get

Ee-St = pEe-SX + qEe-SY Ee -s

8
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pEe SX
Ee-st = (1.12)

1 - qEe-SY NI!S
We now ascribe a discrete cost to the tossing process in the following manner.

Let x and y still denote the respective durations of an h-toss and of a t-toss. We

introduce a Poisson source of intensity X which is independent of the tossing process.

Let the discrete costs be

#x = number of Poisson arrivals during x

#y = number of Poisson arrivals during y
S

#T = number of Poisson arrivals during 1

The Poisson operator "#" applied to each summand in each argument in (1.10) results
~in

i (#r) = p,(#x) + qi(#y + #T). (1.13)

This is a valid equation since the Poisson operator is additive over nonoverlapping

intervals, say A and B:

#(AuB) = #A + #B (1.14)

It is known that E#x = XEx and E#y = \Ey; and that

e - x (Xx)J (.5
Pr(#x = j) = E (1.15)

ji

(cf. Gross and Harris, Section 5.1.)

From (1.13) we can find the distribution and moments of #T. The expectation of #T"

-V. _ can be obtained also from (1.11):

E#t = )ET = Ex + .. XEy (1.16).: p -

PS

Equations of the type (1.10) and (1.13) found an application in the theory of
V M/G/1 queues and their variants. (Cf. Krakowski July 1986; November 1986; 1987.)

A costing Model Consider the following costing model. Toss a coin till h results. The

cost of tossing an h is A and the cost of tossing a t is B; A and B are random
variables.

V
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h

p; A

t Fig. 1.3
q; B

The corresponding omni-equation is, denoting by K the cost of tossing till h,

-(K) = p,(A) + q*(B+K) (1.16)

Setting *(K) = K gives"K =A +. B.P

Since the costs A and B can be negative so can K; hence the method of

generating functions may not be applicable.

10
N



Section 2 The Project {hh}

We toss a (pci) coin till we reach hh, i.e. two successive "heads." We start with

the model {N;hh) where we tally N, the number of tosses in reaching the target

pattern hh. The r.v. N has been the most commonly discussed r.v. in models of

coin-tossing. Our interests, however, will not be limited to N.

The simplest renewal tree for {;hh) is -

[hiI denotes stopping toss

(denotes renewal toss

- (t)

(t) Fig. 2.1

and its associated omni-equation is

*()= p *i(2) + pq*l(2+N) +s q*~(l+N) (2.1)

(The omni-convention applies).

Note We referred to Fig. 2.1 as the simplest renewal tree. A more extended renewal

tree for {N;hh} is shown in Fig. 2.1a:

[hi

h.. [hi

h&() t Fig. 2.1a

I, The omni-equation for this tree is

=(N p24i(2) +4 pq*t(2+N) + qp2'*(3) +

+ qpq*j(3+N) +. q 2 i(2+N) (2.l1a)

By setting *I(N) = N we specialize (2.1) to
2S

N=2p 2 + 2pq +i pqN+ q + qN

f11J
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from which follows

N 1 forp-q=l/2 N=6 (2.2)

When *(N) = (N- j) 2 equation (2.1) becomes

E(N-!)2 = p2(2-1)2 + pqE(2+N-N) 2 + qE(l+N-j 2

and, since E(N-N)=0 we get eventually, with N from (2.2)

pN 2 1 + 2  P" for p = q=1/2 we have N 22 (2.3)

With *(N) = Nk, k = 2, 3, 4 etc. we can get successive moments of N from (2.1).

Letting *I(N) = ZN we get from (2.1)

EzN = p 2z 2 + pqz2EzN + qzEzN

from which we have the gf of N:

EzN lZ2 (2.4)
1-qz-pqz2

Letting ,(N) = 8(N-j) we get, since ES(N-j) = Pr(N=j),

Pr(N=j) =p2pr(=j) + pqPr(2+N=j) + qPr(l+N=j) (2.5)

OA, which, with

N - Pr (N=j)

is MIN

N= p28(j-2) + pqNi_2 + qNj_1  (2.5a)

a recursive relation for Nj; of course N. =0 for j < 2.

[We can also read (2.5) directly from Fig. 2.1.]

P- It is easy to see directly from Fig. 2.1, or by properly specializing *(N), that we have

a relation analogeous to (2.5) in which Pr(Nmj, mod k) takes the place of Pr(N=j).

12



In particular, when k=2 we have Pr(Na1, mod 2) = Pr(N is odd)

and

Pr(N=O mod 2) = Pr(N is even) N.

Let for brevity,

oi=Pr(Nisodd), 13= 1-a=Pr(Nis even)

When *(N) = a we have *j(2+N) = oi and *(I+N) = 1-o; (2.1) becomes

2
01 = p "0 + pq ' ot + q(1-ot) (2.6)

and thus 0

q _-pq and 3=1-01= 1-pq (2.6a)1€= +q2  l+q2

Of course, we can read (2.6) directly from Fig. 2.1. When p=q=1/2 we have 1 = 2/5
and 3 = 3/5.

We turn now to the processes

H = number of h-tosses upon reaching the stop (here the second h in hh)

T = number of t-tosses upon reaching the stop

Each of these processes is clearly isographic with N with respect to the renewal tree in
Fig. 2.1. The omni-equations for H and for T are, as read from Fig. 2.1,

*(I) = q t(H) + pqt(l+H) + pi i(2) for {H;hh} (2.7)

* = q*(l+T) + pq*(l=T) + p2*(O) for {T;hh} (2.8)

Since H and T are each isographic with N with respect to Fig. 2.1 then so is the vector
(H,T). Hence we can fuse (2.7) and (2.8) into a bivariate omni-equation in H and T A'

(with the omni-convention in force) -A

i(H,T) = q*(H, 1+T) + pq*i(l+H, 1+T) + p2 *4(2,0) (2.9) '

where l(H,T) is an arbitrary function of H and T in the model {H,T;hh}.

When standing alone equation (2.7) can be simplified to

=(H) p*(2) + q*(l+H) (2.7a)

13
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and equation (2.8) to

.(T) = p'*(O) + q'*(l+T) where p' = p2 and q' = 1_p 2  (2.8a)

Equation (2.7a) is equivalent to
,~(--) = p*(1) + q*(H-l+l)

which, upon comparison with (1.6) implies that in (I-I; hh}

*(IH-1) = *(Gp) and *(H) = *(l+Gp) (2.7b)

which says that the r.v. H-1 is a geometric r.v. with parameter p for fH;hh}.

Similarly (2.8a) implies that in {T; hh}

*(T+I) = *t(Gp,') where p' = p 2  (2.8b)
•2

which says that the r.v. T+1 is a geometric r.v. with parameter p' = 1-p2.

From (2.7b) and (2.8b) we get

H-+- G =1 + 1/p (2.10)

and

T =-+p, = 1 1/p'=-1 +1/p 2  (2.11)

and we verify that H + T = 1/p + 1/p2 = as in (2.2). From (2.7a) and (2.8a) we
can find the moments and distributions of H and of T.

We turn now to the omni-equation (2.9) in order to explore the joint behavior of

H and of T. Let ,(HT) = HT and we obtain

H =q[H+ lHT+pq[+H+HTI+p 2 .0

from which we get, aided by (2.10) and 2.11),

IT = 2/p3  1/p -i (2.12)

To get the joint probabilities

* Nij  Pr(H=i, T=j)

14



we set */(H,T) = ES(H-i)8(T-j) = Pr(H=I,T=j) and obtain from (2.9)

Pr(H=i,T=j) = qPr(H=i,l+T=j) + pqPr(l+H=i,l+T=j) + p2Pr(i=2, j=O) (2.13)

i.e.

Nij = qNij-1 pqNi-l,j-i + p28(i-2)8(j) (2.13a)

Of course, Nij = 0 when i < 2 or j < 0.

From (2.13a) we have N2,0 = p2 ; N 2,1 = qN2,0 = p 2q ; N2J = p2 qj; Ni,o = 0
for i<2 ; N 3,1 = q'0 + pqN2,0 = P3q etc.

To get the bivariate gf for H and T we set

*f(H,T) = ZH .ZT

thus (2.9) becomes

EzH'EzT = EzH. E z T + pqz, ' "EzH'EzT + P2Z 2
1 2 1 2 1qz.22 Ez1

and we get the sought for generating function

p2z 2
EzzT = (2.14)

1z 2 -q- pqzl Z2

It is often the case that the simplest way to derive a gf is to specialize an
omni-equation as read from a recursion tree (or a set of such trees, as we shall see
soon) or from some other structural graph. This has certainly been the case in our
problems. Introduced as a prop for the span and the focus of attention, the recursion

trees turned out to be of essence in the structure and classification and analysis of the
models. Thus the notion of isography is a direct result of this deepened understanding
and so is the ability to formulate multivariate problems (e.g. H and T jointly) almost
as easily as univariate problems. Problems which appear weighty exercises in
combinatorics (e.g., the probability that H is odd and T is even) are routinely treated
as special cases of the relevant omni-equation. But more can be daC still. Consider,

e.g., the r.v.

dM= number of doublets ht obtained on the way to hh. Note that the M-process
is isographic to N, and we get from the recursion tree in Fig. 3.1:

15
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=(M) q*(M) + pq*(l+M) + p'*(O) (2.15)

I Equation (2.15) can be fused with (2.1) into a bivariate equation -

*(N, M) = q*(l+N, M) + pq*j(2+N,1+M) + p,2 (2,O) (2.16)

or it can be fused with (2.9) to obtain the trivariate equation

,(H,T,M) = q(H,1+T,M) + pq*(I+H,1+T,1+M) + p2 ,(2,0,0) (2.17)

Equation (2.15) when considered apart from its relation to other isographic random %-A .

variables can be simplified to

*(M) = p*(O) + q*(l+M) (2.15a)

Equation (2.15a) can be written, by adding 1 to each argument,

=(+M) pi(1) + q*(1+l+M) and we recognize that

(1+M (Gp) (2.15b)

which implies M = G P- 1 = 1/p - 1 = q/p; when p = q = 1/2 we have M 1.

In order to show that isography should always be specified with respect to a
definite renewal tree consider the model {L;hh) where

L = number of non-overlapping triplets hth on way to hh. "Non-overlapping"
means, e.g., that the sequence hhthth contains only one tallied hth triplet (but the last 5,:

of the six indicated tosses is an h capable of starting a new tallied hth). The tree of
Fig. 1.2 is clearly not a renewal tree for the model {L; hh). However, let us extend
that tree as has been done in Fig. 1.1: 0

[h] , [hJ
.h - (t)

hh W- t

(t) Fig. 2.2

The tree of Fig. 2.2 is clearly a renewal tree for both N and L which are therefore
isographic with respect to Fig. 2.2 but not with respect to Fig. 1.2. (Note that H, T, N ]
and L are isographic with respect to Fig. 2.2.) N
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Let us write down the bivariate omni-equation for (N,L) directly from Fig. 2.2.

We have, and the reader should verify it,

*(N.L) = qi(l+N,L) + pq2 *,(3+NL) + p2 q 2 (4+N,1+L) +

p 3q *j(4,l1) + p2 *I(2,0) (2.18)

From (2.18) we obtain an omni-equation for N alone by disregarding the second

argument in ,(N,L): ,(N,L) -+ ,(N); and we obtain an omni-equation for L by

disregarding the first argument in ,(N.L): *(NL) -+ *(L). The equation for L is in its

nascent form (i.e. as read off from its revewal tree in Fig. 2.2).

*(L) = q*(L) + pq2*(L) + p2 q2*(l+L) + p3 q*(1) + p 2
*(0) (2.19)

which is simplified to

q2 1 +L) + *(I) + - (0) (2.20)

From (2.20) we can derive the moments and the distribution of L. Without deriving

this distribution one can tell from the form of (2.20) that the sequence of the L.,

where L i Pr(L-j), is geometrically progressing starting wi'4h L1 and that Lo = 1/(l+q).

The expected value E is

E = q/(l+pq) ; for p = q = 1/2 we have E = 2/5 (2.21)

As in Section 1, we can ascribe durations to the h-tosses and the t-tosses; and we

can apply the Poisson operator to these durations but we will not pursue this matter

further.

In Section 5 we will derive, in more than one way, the omni-equation for the

model {N; k'h} and the model {H,T; k~h} where k*N stands for a string of k "heads". .. ..

Note What can we say about {N,L;) based on the tree of Fig. 2.1? Well, we can still

write

*(L) p2*(O)+ pq*(Lht) + q*(L), (2.22)

where Lht is the conditional random variable denoting the number of triplets hth on

way to hh provided that the first two tosses were h and t.

17



But (2.22) is one equation in two random variables and hence incomplete. It is

easy to fuse N and L into *(N,L). When standing alone (2.22) can be simplified to

*(L) = p*(O) + q*(Lht) (2.22a) 0

We wish to point out, without pursuing the matter in depth, that Fig. 2.1 can be

generalized to

P2 ~1K

Pt Fig. 2.3

whose omni-equation for (H,T) is

q(H,T) = q, (H,1+T) + pjq 2 *(I+H,1+T) + PiP 2 *(2,0) (2.23)

where Pr("heads") = P2 for a toss right after an h-toss

,= P otherwise

and Pr("tails") = q2 = 1 - P2 for a toss right after an h-toss

q, 1  p,-p otherwise ,5

We are now ready to deal with models which cannot be graphed by a single finite

renewal tree. Such a model is (r; hh} where r is the number of reversals h --. t or

t -. h; the best way to see it is to try to draw a renewal tree for this model. ,.
I'

-8
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Section 3 Furcation Method

Consider now the project {ht) where we toss a (p,q) coin till the couplet ht, the target,

is realized. The renewal tree for this project is shown in Fig. 3.1 below:

h
/h-t] stop ..

h -[t stop
h -- [t] stop Fig. 3.1

(t) renewal

This tree is infinite and cannot be condensed into a single finite renewal tree.

(Though infinite, the above tree is still easy to handle for {N;ht) and some other

models because of its simple geometry but we will not follow this possibility since it

represents a special case only.)

Let us now consider the first toss as shown in Fig. 3.2:

h mid-toss

(t) renewal Fig. 3.2

V The t-toss is a renewal, as indicated. But the h-toss is an intermediate toss, that is a

toss between a renewal (or beginning) and a stop. We will refer to such a toss as a

mid-toss.

can As graphed in Fig. 3.2, the first toss provides us with partial information which

can be stated ab an omni-equation. For the model {N;ht} this equation is ., -

h
( (N) = p*(l+Nh) + qi(l+N) (3.1)

where Nh is the remaining number of tosses provided that we already have "heads";

thus, Nh is a conditional r.v. The furcula to the left of the equation is a useful

mnemonic device and we will use it repeatedly. In (3.1) we have'used the fact that

*(Nt) = *(N) since this toss is a renewal.

Let us continue with a toss conditioned upon our having just tossed heads. Fig.

3.3 represents this conditional toss.

19 U
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h mid-toss

h [t] s Fig. 3.3

The omni-equation corresponding to Fig. 3.3 is

h

h t * (N h) = p* (lI+N h) + q (1) (3.2) '-..

Note that from equations (3.1) and 3.2) we can reconstruct Fig. 3.1 and Fig. 3.2 "S-'

(without using the furculas to the left of the equations). This goes to show that the -"

fork equations for N and Hh retain the memory of the underlying structure. This •

feature is characteristic of the "furcation" method.

Equations (3.1) and (3.2) have two unknowns random variables, namely N and

Nh, and we therefore expect them to be a determined set. The r.v. Nh may be

thought of as an auxiliary r.v. but it may be of direct interest to some analysts; after .."-

all, the problem of dividing the pool in the midst of a gambling game arose early in

the history of probability.

From Section 1 we recognize (3.2) as the equation solved by Nh = Gq orV1
*=(Nh) - *(Gq) where Gq is a geometric r.v. with parameter q. In fact, from the

structure of the model we can reason out that

*(N) = *(Gp + Gq) and *(Nh) = *(Gq) (3.3)

The number of tosses leading to the first h is a Gp, as we well know; and the number '..

of additional tosses leading to the first t which follows the first h is a Gq. Hence we

assert (3.3). In diagram form, we have

h -t- -'-

Gp G Fig. 3.4
pq 05*4~

-~ 

'%

From (3.1) and 3.2) we can obtain for N and for Nh their moments, distributions ..- ,

and generating functions. Let us start with N and Nh. For *(N) = N equations (3.1) S

and 3.2) become

20A
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p*+h + q.,,an R P,,*h +q-

which iplies

p(1Nh = 4 pz144N and ZNh pzZ- +

3 which impulies in

N Ez1/ and and/p+1/q=1/p (34)

Upnsttn j(N) = ZNN~) et. quations (3.1 and (3.2) become e

E(N =j pz~h+Nhj +qsr~lzN and Ezh= Pz rNhrj + ~ ~ +hj qz q'Alj

whicwih res l iN ) an 0~ a edrvdrcrieysatn ih(h1

Spoezno ha we wattosl31 and (3.2 fo Nz i;.tofnda
1-qzeuaio forz(1z (3loe.Fo5).1 e e

The+h prbblte *(N) r(N) ad(h~=P(h r bandb etn

and ~j, eiiig t .u Eutin (3y) and (3.2)cin beromeathe aruenwehv

Pr(Nh) = p NrlN) q-(N j n rN~)=prlsN~)+qr1j

Su pposeut n w that weqwatint toov (3.) w an 3.2)eeuaio for NN ii.tnin n'

p*(N) = i N) -pq(+N) +p*2 36

andvdnStruhueyt n utating 1(N fromj (N)h arumnt we.6 havee
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(N)j = (N)j_! -pq(N)j_2 + pqS0-2) where (N) = 0 if j : 1 (3.7)

From (3.7) we have (N) 2 = pq, (N) 3 = pq, (N) 4 = pq(l-pq), ( 5 = pq(1-2pq), etc.

Of course, in numerical work p and q = 1-p are fixed and the recursion involves only

real numbers, not symbols. Cf. (3.18b) for an explicit solution of (3.7). One can also
derive (3.6) from (3.5). In fact, generating functions can be very effective in such
uncoupling of the random variables entering omni-equations. This is not really
surprising since generating functions have been applied to the solution of difference
equations of which omni-equations are a special species.

A solution to a coin-tossing model can be given by an explicit formula for the

probabilities (or moments), by recursion formulas for the probabilities, by generating

functions, or by omni-equations. It is often very easy to switch from one
representation to the other, especially among omni-equations, generating function, and
recursions for probabilities. The Table 3.1 below shows corresponding terms for the

three representations for A, a r.v.

Omni-Term Generating Term Probability Term

*(A) EzA A dPr(A=j)

i(l+A) zEzA A 1

*(2+A) z2EzA Ak A
*(k+A) z k Ez AAjk

.... d 1 ifj=O =
1 0 if j70

z 80-1)

aI(2) z2 80-2)

(k)k 8-k)
*(Ga) az (Ga)j=a(l-a)j-'

1-(i-a)z
Table 3.1

Writing (3.5) as a linear combination of terms

%I Nh - 2N+pzENEzh - qzEzN h = qz and EzN - zEzN + pqzz = pqz2  (3.5a)

we can transpose them, term by term, into their omni-form with the aid of Table 3.1:

*(Nh) - q*(Nh+l) = qi(1) and *(N) - *(N+I) + pqi(N+2) = pq*(2) (3.8)
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the second of which is equivalent to (3.6). Equation (3./8) or (3.5a) can likewise be :.

transposed into its equivalent recursion in probabilities:

(Nh) j - q(Nh)j I = q(-1) and (N)j - (N)j 1 + pq(N)j 2 = pqSG-2) (3.9) •

the second equation of (3.9) being equivalent to (3.7).

It is important that we are able to switch easily between the omni-form, the
generating function and probability recursions of a model. We may want to have the
omni-equation to calculate the moments or the probabilities modulo some integer but
we happen to have the generating function or a probability recursion. The literature
abounds in generating functions upon which we can draw. Moreover, even a skilled
practitioner of omni-equations may encounter a problem where a probability recursion 0

is easier to derive than an omni-equation. And even in essentially omni-work we may
want to solve a system of fork equations, often much bigger than (3.1) and (3.2),

where generating functions may be the method of choice.

We now prove a theorem both by means of omni-equations and generating
functions, the latter aided by a partial fraction expansion.

Theorem Let Ga and Gb be independent geometric random variables with
respective parameters a and b where a 3 b. Then

*(Ga + Go)b *(Ga) + a (*Gb) (3.10)

Equation (1.6) states that

'*(Ga) = a*(1) + (1-a)(1+Ga) (3.11a)

l(Gb) = b*(1) + (1-b)*(l+Gb) (3.11b) •

Shift now the first of the above equations by Gb and a the second by Ga:

*(Ga +Gb) = a(l+Gb) + (1-a)(l+Ga +Gb) (3.12a)

*(Gb+Gb) = b(l+Ga) + (1-b)*(l+Gb+Ga) (3.12b)

By eliminating the term *(l+Ga+Gb) from the above two equations we get

(a-b)*I(Ga+Gb) = a(1-b)*(l+Gb)-b(1-a)(l+Ga) (3.13)

23F?
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From (3.13) and (3.11a) and (3.11b) we have (3.10). Note that the right-hand side of
(3.10) is a linear but not convex sum since either b-a or else a-b is negative. Thus,
as has been pointed out by Botta and Harris (1986) linear but nonconvex sums of S

random variables arise in contexts where the original formulation of a problem is in
the form of sums and convex combinations of random variables.

It can be shown by shifting (3.10) by G C that one has

*(G a + Gb + G) = bc (Ga) + c a (Gb) + a *(G) (3.14)
(b-a) (c-a) (a-b) (c-b) (a-c) (b-c)

where a, b, and c are distinct. (It should be added that it is possible to interpret G a

so that a need not be positive and less than 1 but we cannot delve here into this

matter.)

We derive now an expression equivalent to (3.10), in terms of generating

functions. Since Ga and Gb are assumed independent, and since

Ez a =- az and EzGbb = bz (3.15)

1-(1-az) 1-(1-bz)

we have

Ez Ga+Gb = EzGaEzGb az bz (3.16)
1-(1-az) 1-(1-bz)

With the aid of the partial fraction expansion and its algebra we get

az • bz b az a bz
[1-(l-az)I[l-(1-bz)j b-a 1-(1-a)z a-b 1-(l-bz) (3.17)

From (3.15), (3.16) and (3.17) we have .,

Ez a+ b  ... Eza + b EzGb  (3.18)

b-a a-b 
. ,

which translates (3.10) into the language of generating functions.

Of course, (3.10) yields (3.16) upon setting I(Ga) = z Ga, etc., but we wanted a

purely gf derivation. Setting in (3.10) *(Ga) = Pr(Ga=j) etc., we get
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Pr(Ga + Gb j) = b-a Pr(Ga = j) + -aab Pr(Gb = j) = (3.18a)

b-a a-b-bab(l-a)-1a + g-a-b(-b-b

Setting a = p and b = q in (3.18a) we have for the {N;ht}, in view of (3.3),

p-

an explicit expression for N.

We return now to the project {hh}. Although the model {N;hh} can be

represented by a single finite renewal tree the model {r;hh} (where r = number of

reversals h -+ t and t --. h in the project {hh)) cannot be so represented. We will apply

, the general forking method to analyze it. The first toss is described by the

omni-equation

't h (r) = p*(rh) + q* (rt) (3.19)

-where rh  number of remaining reversals if the first toss is h

r t = number of remaining reversals if the first toss is t.

The fork-equations conditioned upon having just tossed h, or else just tossed t, are

[hi]
h t *(rh) = p,(0) + q*(1+rt) (3.20)

h
t *(rt) = plI(l+rh) + q*(rt) (3.21)

The three equations (3.19), (3.20) and (3.21) allow us to derive the distributions of r, ,%
SI. P'

or rh and of rt; their moments and their generating functions; and other functionals.

Note that

R = r+1, Rh = rh and Rt = r t

where R = number of runs in any sequence; Rh and R, are the corresponding S

conditional random variables.
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It is easy to verify that

F - (2-p 2)/p, Fh = 2q/p and Ft - (1+q)/p (3.21a) -

When p = q = 1/2 we get Fh= 2.5, Fh= 2, and Ft= 3.

We derive the generating functions for r, for rh and for rt by setting *(r) = Ezr,

etc. After a little algebra we get

Ezr = p2+pqz Ezrh= P . Ezrt= pz (3.22)
1-qz2  1-qz2  1-qz

Aided by Table 3.1 we recycle these gf's into uncoupled omni-equations for r, for rh

and for r t:

*(r) = p2*(O) + pq*(1) + q*(r+2) (3.23)

,I(rh) = p*(O) + q*I(2 +rh) (3.24)

.I(rt) = p*(1) + q*(2+rt) (3.25)

From Table 3.1, or by setting *(r) = Pr(r=j) = (r)j in (3.23)

we get

(r)i = p28(j) + pq8(j-1) + q(r)j_2  (3.26)

and successively

(r)0 =p 2 , (r)1 =pq (r) 2 =qp2 , (r) 3 =pq 2; (r)2, +1 = pq 2 j+1

We find axpr(r is odd) by setting *(r) = Pr(r is odd) in (3.23):

.o =pq + qot, hence o =q (3.27)

A major advantage of the omni-method is its ease in formulating multivariate
problems. Suppose that we are interested in jointly treating N and r in the project ,
(hh}; we designate the model of interest as {N,r;hh). Let us proceed in developing the
elementary forks (the furculae) and their associated omni-equations. The first toss
results in
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h
t (N,r) = p(+Nh,rh)q(lNt (3.28)

Unlike in the model {N;hh} we now distinguish between *(Nt) and *j(N) because

of the interdependence between Nt and r t , The fork-equations conditional upon the

prior toss having been a non-stopping h, or else t, are

[hi
h t (Nh, rh) = p(l,O) + q*(l+Nt,l+r t ) (3.29)

h

t t *(Nt,rt) = P-(+Nh,l+rh) + q*(l+Nt,l+rt) (3.30)

From the above equations we can find the joint (and marginal) distributions for N and

r; for Nh and rh; and for N t and rt; we can find recursively all the mixed moments

for the pairs just indicated; we can find the bivariate gf's for these pairs; and we can

find some other bivariate functionals.

At this point it is worth indicating how to combine N and r (and in other

problems any number of random variables) into a random vector. Define

V = (N,r), Vh = (Nh,rh) and Vt = (Nt,r t )

oij = (i,j)

The fork-equations (3.28), (3.29) and (3.30) can be extended, using this vector

notation, to

(V) = p*(Olo+Vh) + q*(Or1o+Vt) (3.28a)

*I(Vh = p(olo) + q*(aI + Vt) (3.29a)

*(Vt) = p*(o11 ) + q*((oIo + V t ) (3.30a) '

The above form should be somewhat more comfortable for uncoupling the set (3.28),

(3.29) and (3.30) in a way analogous to deriving (3.8) from (3.1) and (3.2) via (3.5a)

for the model (N;ht}.

Many authors on probability consider that their task is completed upon deriving a

generating function or a set of such functions (or the kindred Laplace transforms).

We claim the same privilege at this time.
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The flexibility of the omni-method and of the fork-equations enables us to replace or

supplement the process N, number of tosses, by the process K, the cost of tossing.

We can think of N as the cost when each toss costs exactly 1 unit. Suppose now that 6

the cost of a toss depends on whether it is h - t or t -. t, etc. E.g. consider the

cost-matrix of Table 3.2:

To
h t '

Start 0 0
h 1 0
t -2 1

Table 3.2

More complex cost matrices can take more tossing history into account. (Such costing

patterns were considered in some of our work on Markov chains, to be published in

the future.)

Although the model {N;hh) is described by a single finite renewal tree the model

{K;hh}, with the K-matrix in Table 3.2 cannot be reduced to such a tree. We need

several fork equations. It is not necessary to know in advance the number of
elementary forks, these forks arise in the process of developing the equations. In our

case we have for the cost K

h

0 t (K) =p(Kh) + qt(Kt )  (3.31)

[h]
0 t *(Kh) =p*(1) + q*(Kt) (3.32)

t ,(Kt) ff i P(- 2+Kh) + q*(l+Kt) (3.33)

Setting */(K) = K, etc., we get

K= pKh+qKt; Kh = p+qKt; Kt =-2p+pKh+q+qKt

from which we find when p = q =1/2

K = -1/2; Kh = 0; Kt = -1

28
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Since such costing models involve generally both positive and negative costs
generating functions may be difficult or impossible to apply.

We formulate now the bivariate model {N,K;hh). Its fork-equations corresponding to
(3.31), (3.32) and (3.33) are

*(,)= p*l(+NhoKh) + q*j(l+Nt,Kt)

*1(Nh,Kh) =p*~(1,1) +- q*I(l+Nt,Kt)

*I(Nt,Kt) -p*I(l+Nh, 2+Kh) +I q*~(1.iNt,l+K t)

We shall not follow this model further.
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Section 4 On Converting Omni-Equations in N into Omni-Equations in H and T

It seems to have escaped general notice that the equations for N, number of

tosses in a project, carry enough information to be transformed into bivariate equations 0

in H and T, the number of h-tosses and the number of t-tosses. This is true whether
the N-equations are in the omni-form, g.f. form or in distribution form. However, it
is easier to observe this convertibility from N to (H,T) for omni-equations.

For didactic purposes let us start with (2.9) alias (4.1):

*(H,T) = q,(H,1+T) + pq*(l+H,1+T) + p2,(2,O) (2.9) = (4.1)

Specializing the general function *(H,T) to *(H+T) = *j(N) we have

*(N) = q*(l+N) + pq*(2+N) + p2*(2) (2.1) = (4.2)

The question suggests itself now, How do we rederive (4.1) from (4.2) if this is at all

possible? For generally, operations which mingle variables tend to obliterate S

information; and the passage from (4.1) to (4.2) comingles H and T by summing the

two into N. But a close comparison of (4.1) and (4.2) reveals that in our case there is
enough special structure in (4.2) to allow us to derive from it (4.1). Compare the first

right-hand term of (4.1) with its homologue in (4.2); we have

q*,(H,1+T) and qi(l+N)

Each of these terms has the coefficient q, a reminder that the last toss was a t-toss.
The summand 1 in the argument (+tN) tells that one toss has taken place; and

summand 1 in the bivariate argument (H,1+T) tells that a t-toss has taken place.
Thus, the term q*(H, 1+T) says twice that the toss was "tails" whereas the term

q(l+N) says it only once. But one hint is enough for the wise, as the saying goes,

and thus we know that .

q*(l+N) -. q*(H,I+T) (4.3)

if indeed (4.2) can be transformed into (4.1).

Let us now compare

pq*t(1+H,1+T) with pq*(2+N).

The coefficient pq in each of the two terms bears witness to the fact that one h-toss

and one t-toss took place. The argument (2+N) confirms that altogether two tosses A
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took place; the bivariate argument (1+H,1+T) specifies again that an h-toss and a

t-toss took place. Therefore the term pq*(2+N) carries enough information for its

conversion:

pq*(f2+N) - q*(I+H,I+T) (4.4)

The terms p2 *(2,0) in (4.1) and p2 t(2) in (4.2) each says through its coefficient, that

the toss couple hh took place. The argument in p2*(2) confirms the number of tosses, ,

while the argument in *j(2,0) specifies that hh occurred. Thus

2 P2
p*j(2) p pf(2,0) (4.5)

Thus we have transformed (4.2) into (4.1). A similar argument allows us to transform

any linear omni-equation in N into an equation in (H,T) provided that in the

N-equation each term is of the form paqb a(a+b+N) or paqb *(a+b); for such terms the

correspondence with (H,T) terms is
paqb,(a+b+ ,.paqb ,(a+H,b+T) and paqb *(a+b) - paqb *(a,b) (4.6)

We will call such terms in N or in (H,T) upright. A linear omni-equation shall be

called upright if each of its terms is upright. Thus, (4.2) and (4.1) are upright.

It is easy to see that each model for N can be formulated as an upright

omni-equation. This is clearly seen when one starts with a renewal tree (it is even

clear for an infinite tree such as Fig. 1.1) and it is clear that each nascent fork S

equation is also upright. For the general form of such a fork-equation is

"" t ,(A) = plI(l+Ah) + q*,(l+At) (4.7) eiZq -0

where the r.v. A is N or Nh or N t or Nht or Nth or another conditioned N. (If A
Ntthen A = Nhth t. One can also see that when uncoupling a set of such "

forks into a set of univariate equations (one equation for N, another for Nh, etc.) one

can preserve the uprightness by careful algebra.

But what about those omni-equations for N which contain non-upright terms? ,'

For example, the omni-equation (3.6) for (N;ht} (
*(IN) = *(l+N) - pq*(2+N) + pq,(2) (3.6)= (4.8)
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contains a term which is not upright, namely *(I+N). Without disturbing the upright :d

terms we multiply *(I+N) by p+q in (4.8) thus obtaining

*(N) = p*(l+N) + q*(l+N) -pq*(2+N) + pq*(2) (4.9)

which is an upright equation. Converting (4.9) term by term we apply the transitions

*)-~ *L(H,T)

p*(l+N) - p*(I+H,T)

q*(l+N) - q*(H,1+T)

-pq*(2+N) - -pq*(l+H,1+T)

pq (2) - pq*I,(11)

and obtain an upright omni-equation in H,T for the model {N;ht}

The polynomial p+q is the only polynomial in p and q which is of degree one and

which equals one. Likewise, to make the term i(3+N) upright we multiply it by

(p+q) 3. (The omni-equations in N where each term applies to a single path are born

upright; but where the terms corresponding to some different paths but with identical

arguments are combined the uprightness may be lost.)

The notion of uprightness applies also to gf terms and equations. We say that a

gf-term for N is upright if it has the form

(pz)aEZN (4.10)

and that a gf-term for H,T is upright if it has the form

(pz,)a(qz,)bEz • EzT . (4.11)

It is easy to see that upright omni-terms and upright gf-terms correspond to each

N, other; this holds for terms in N and for terms in H,T.

The following diagram illustrates the relation between upright omni-terms and

gf-terms; and between N-terms and H,T-terms:

p a q b(a+b+N) p aq b(a+Hb+t)

~paq az N (z a(qz 2) Ez 1E7 Fig. 4.1 .%r

32,, ,

.A:.A



The above diagram remains valid when we set N = 0; H = 0; and T = 0.

[We could have defined an upright gf-term as a result of setting *(N) = EzN or

setting *t(H,T) = EzH • EzT in upright omni-terms.]

We can likewise define uprightness for linear terms in recursive relations for

probability densities by specializing *(N) = Pr(N=j) and Pr(H=i,T=j) = Nij in

omni-terms. Denoting as before (N)j = Pr(N=j), and (N)ij = Pr(H=i,T=j) we see that

upright terms for probability densities are

pa b and paN q j-a-b adpqb N i-a,j-b

and _4.12
apaqb8j- and pa qb8 i-a 8 j-b

Example from Feller Consider the model {N;k*h} where k*h stands for a string of k

"heads." Feller, p.323, equation (7.6), gives two equivalent expressions for the g.f. of
N:

pkZk
EzN = I - qz(1+pz ++ pk-I zk-l), (4.13a)

and .t

p k z k (-pz)

EzN z + qpk Zk+ (4.13b)

We notice that (4.13a) is upright, i.e. each of its terms is upright whereas (4.13b) has

one term which is not upright, namely -z in the denominator. Not surprisingly,

(4.13b) is a result of summing the (finite) geometric series in the denominator of 0

(4.13a) and is useful for large k.

The conversion of (4.13a) into the gf for the model {H,T;k'h} is straightforward,

and we show the result only:

EzH ZT= r~ (4.14a)
1 2 1- qz 2(l+pz t ++ pk-lz k-1)

In order to convert (4.13b) into the gf in H,T we first make it upright by replacing

the term -z in the denominator by -(p+q)z, a very gentle intervention:
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pk zk _pk+1 zk+1
EzN = __________ 

I'

1 - pz-qz + qpk zk+1 (4.13c)

It is important to note that in order to transpose (4.13a) and (4.13b) which are \,u

N-equations, into (4.14a) and (4.14b) below which are (H,T)-equations we need not
know the target of the project, here k*h; we do have to know that we start with

N-equations.

From (4.13c) we derive the corresponding gf in H,T (Fig. 4.1 may be used for
term correspondences) and obtain

pk z k+zk+1
zT 2 pzl - q z l k q(4.14b)S 1-p (pz)kqz2

From (4.14b) we now derive the omni-equation in H,T. We obtain, by first clearing,,

the fraction, converting each term as indicated in Fig. 4.1

(H,T) = p*t(l+H,T) + q*(H,1+T) pkq*t(k+H,1+T)

+ pk (ko) - pk+I'*(k+l,0) (4.15)

Equation (4.15) can be converted into a recursion equation for Nol = Pr(H=i,T=j) by

setting *(H,T)=Pr(H=i,T=j); then -.

Nij = pNi-l,j + qNi,j-1 - pkqNi-kj-1•

+ p k(i-k)8 ) - pk+ '80-k-1)60) . (4.16)

We will not delve into the intricacies of how to evaluate numerically the Nij or the

mixed moments of H and T. Ou," aim was to show how to transform an equation in N
into an equation in T,H. One sir, ple result deserves being mentioned. From (4.15)
we extract the omni-equation for T alone by letting *(H,T) - i(T); after some

-~ simplification we have

*t(T) = (l-pk)*(l+T) + pkt(0) (4.17)

and we recognize that *t(T) = *(Gp, - 1) where p' = pk; cf. (1.6).

From (4.15) we get the separate omni-equations for *(H) and i(T) by specializing
*t(HT) - ,(H) and *t(H,T) -. (T):
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(H)= p*(l+H) + q*(H) -pkq*t(k+H) + pk j(k) - pk+I(k+l)

*t(T) = p*t(T) + q*(l+T) -pkq'(l+T) + pk*(0) - pk+l 1 (0 ) p

which simplify to

)(4I) - pk-lq*(k+H) + pk-l*(k) - pk*(k+l) (4.15a)

' (T) = (l-pk)(l+T) + (4.17a)

Now, from either (4.13a) or (4.15) we have, since H+T=N, .

4 *(N) = *(l+N) - qpk j(l+k+N) + pk*(k) - pk+ l,(ki ) (4.18)

kI
From (4.17a) we recognize that, with p' =p

ij,(T) = *(Gp, -1); cf. (1.6) (4.19)
I

Suppose now that we are interested in the r.v. H - T. By specializing "

* I'(H,T) -- *(H-T) and denoting H - T = L we get from (4.15)

,(L) = p*(I+L) + q,(-l+L) - pkqI(k-1+L) + pk (k) - pk+l ,(k+l) (4.20) '-S

We obtain the moments of L from (4.20) like from any other linear omni-equation.

Thus we get by setting ,(L) = L.

q.Lik 1] (4.21)

There is no gf of L corresponding to (4.20) since L is not non-negative. A result like

(4.21) would have to be derived from the bivariate gf for H and T, i.e. (4.14b), or
from the joint distribution of H and T. The recursion equation for the distribution of L

is obtained from (4.20) by setting *(L) = Pr(L=j) = (L)j:

.Lj = p(L)j_ 1 + q(L)j+l - pkq(L)j+1 -k + pkS(j-k) - pk+18(j-1-k) (4.22)
.- ~

.1".' It can be shown that for a given k one can, starting with k-1 consecutive values of.da
known (L)j (e.g. (L)o, (L), ...(L)k-l), derive the other values. And it is easy to see

(a that for k=1 we have L=l; and that for k=2 we have L=2; and that for k=3 there is
neither a lower nor an upper bound on (L)j.
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In order to complete honorably the Feller example we derive for N its
omni-equation and its distribution. From Fig. 4.2 below we read (4.23)

toss#k ,0
*h

h

h-t

h - t

t Fig. 4.2

=(N) q*(l+N) + pq4(2+N) + p2q*(3-N) ++ pk-lq (k+N) + pk*(k) (4.23) "

Setting *(N) = zN results in (4.13a).

Shifting each term of (4.23) by 1 and multiplying it by p results in

ap*(I+N) = pq*(2+N) + p2q *(3+N) + p3q*'(4+N) ++ pkq*(l+k+N) + pk+1 *(l+k) (4.24)

A comparison of (4.23) and (4.24) results in

*(N) = p,(1+N) + q*(l+N) + pk q*(1+k+N) + pk -(k) pk+ 1*(1+k) (4.25)

Setting 1(N) = ZN produces (4.13b).
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Section 5Olio

In this section we analyze several examples which are of interest because they show

the scope of the omni-method or because of some methodological aspects not

previously elaborated.

Example I Toss a coin till at least 2 out of 3 consecutive tosses are h; find N.

[h] [h I[

h t

(t) Fig. 5.1

Note that in the path h-t-t in Fig. 5.1 the h is not "operative" because it gets lost

upon the very nearest toss. From the tree we read directly N

*~t(N) = p2 (2) + p2q*(3) + q*(1+N) + pq2*(3+N) (5.1)

and from (5.1) we have

2 2N NN p p8-2) + p q80-3) + q j-1 + pqNJ-3j_3  (5.2)

222 22 2 3 3 3 - "

N 2 = p2 .N 3 = P q, N 4 = p 2 q2 ; N5 =p 2 q2 . N 6 = p q + p q etc.,

and

p2it(2,0) p2q*t(2,1) + q*(H,1+T) + pq2 1(l+H,2+T) (5.3)
2 N2 2

Nij= p 8(i-2)8(j) + p2qN 2 1 + pq Nij-1 + pq Ni-j,j-2

When we toss till at least 2 our of k consecutive tosses show h we have Fig. 5.2.

[h] [h] [h] k-I heads

h t-- - - t (t) I heads and k-I tails

(t) Fig. 5.2
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We read off the diagram that

*(N) = p2 (2) + p2q*(3) ++ p2qk 2 (k) + pqk-1*(k+N) + qi(l+N) (5.4) 0

The reader should be alerted to the fact that the problem "toss till you get j heads

among k successive tosses and count N" is generally more complex combinatorially

and cannot be represented by a single finite renewal tree; even if j = 3 and k = 5 the
combinatorics call for the general furkation method or a different approach altogether.

The reader should also verify that the renewal tosses in Fig. 5.1 and in Fig. 5.2 -

cease to be renewal tosses for the r.v r (number of changes from h to t and from t to

h). The general furkation method is needed to analyze the project mentioned.

Example 2 Model {N;ht} Revisited

We have dealt with this model in Section 3 already. Now we derive the recursion for

the probabilities (from which we can get the omni-equation) by first finding a few

initial probabilities. Suppose that we can justify the following form for that recursion

(N)j = pqS(j-2) + c1(N)i_ 1 + C2 (N)j_2  (5.5)

We can evaluate cl and c2 if we figure out directly (N) 3; we know that (N) 2 = pq, the

speediest realization of ht. It is easy to see that (N) 3 
i (N) 2 since the triplets which

lead to N = 3 are hht and tht; these two jointly have the same probability as ht. From ,

S(5.5) we now have

(N)3 = c (N) 2 + c2(N)1 = c,(N)2 since (N), = 0

But we know that (N)3 = (N)2 and therefore c, = 1. And since in (5.5) pq + cl + c 2

= 1 (this we know to be true since (5.5) is transformable into an omniequation with

identical coefficients) we have c2 = -pq. This agrees with (3.7). If we do not know

the number of coefficients in (5.5) (these are co + cl and c) we can keep

computing them until co + c1 ++ ck i 1. But even with this procedure it is thinkable
4-4.

that, e.g. Ck+1 1. Thus the method is incomplete so far, it is a plausibility. .%..
-.%-
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Let us consider now the model {N;hth). We assume that the form of the

probability recursion is

(N)j = p q80-3) + c,(N)jI + c 2(N)j 2 + c 3 (N)j 3  (5.6)

a plausible assumption in view of our experience with omni-equations.

We calculate successively (directly from the combinatorics of the model, not from

(5.6))

(N) 3 = p q; (N) 4 = (N) 3 ; (N)5 = (1-pq)(N) 3 and (N) 6 = (1-pq - p q)(N)3 (5.7)

From (5.6) and (5.7) we have

(N)4 = c1(N) 3 ; hence c, = 1

From (5.6) and (5.7) we further have

(N) 5 = cl(N) 4 + c2 (N) 3 = c2 (N) 3 = (1-pq)(N)M3 ; therefore c 2 = -pq
4.

Equation (5.6) can now be written

(N)j = p qS(j-3) + (N)j_j - pq(N)j- 2 + C3 (N) j- 3

Since the coefficients on the right-hand side add up to one we have c 3 = pq ; (5.6) is

now

(N)j = pq 0-3) + (N)j_ 1 - pq(N)j 2 + pq 2 (N j-3  (5.8)

We can compute (N) 6 from (5.8) and verify that it agrees with the value given in
(5.7). 

•

The omni-equation corresponding to (5.8) is (cf. Table 3.1)

*(N) = pq*l(3) + *t(1-N) - pq*(2+N) + pq2 (3+N) (5.9)

Equation (5.9) can be transposed into an equation in H,T.

Example 3 Consider the model [N; h,odd #t,h). The fork equations for this model are

h

t (N) = p*i(I+Nh) + qi(l+N), since ,(N) = *t(N) (5.10)
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t *(Nh) = P*(I+Nh) + q*(l+Nht0, since *(Nhh ) = *(Nh) (5)

t Nh 0 P *I(l+ ) + q*~(l+N~) h ' 'h

ht (Nh) = p(1) + c(1+Nh), since ,(Nh t) = ,(Nh) (5.12)

Only three fork equations suffice for a problem which at first appears combinatorially
complex. From the above equations we easily get

_1 +_.h 1 + 1
" - _.2 (513

p2 q p' hpq ' ht p (5.13)

0

For p =q = 1/2 (5.13) becomes N= 8; Nh = 6; ht =4.

From (5.10), (5.11) and (5.12) we can derive all higher moments and the probabilities

for N, for Nh for N t and for Nth. We can also derive the gf's for N, for Nh, for N t t

and for Nh t by setting in those equations i(N) = ZN, etc. We thus get

EzN = pzEzNh + qzEzN .S

EzNh = pzEzNh + qzEzNht

Ez Nht = pz + qzEzNh
-0

from which we get

EzN = p2qz3 (514)1 - z+q(p-ciz2 + q 3z3

pqz2'-
EzNh = - pqz2 (5.15)

pz -q 2 z2

EzNht = pz(1-pz)(51):-

1- pz - q 2z2

The last three equations can be easily transposed into omni-equations (c.f. Table 3.1) U
(N)= i(1+N) - q(p-q)* (2+N) - q * (3+N) + p2qd/(3) (5.14a)
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*(Nh) = *(l+Nh) + p(l+Nh) + q2*(2+Nh) + pq*(2). (5.15a)

*I(Nh t) = pI(l+Nh t) + q2 *(2+Nht) + P*(1) - p2i(2) (5.16a)

The three above equations, or the equations (5.14), (5.15) and (5.16) can be

transposed into the corresponding equations for the probabilities. The reader ,

interested in converting (5.14) or (5.14a) into an equation for (H,T) should make it

upright. A neat exercise is also to derive (5.15) by assuming (and plausibly justifying)

that

*(N) = oeo*(3) + ci1*(l+N) + O'2 */(2+N) + oi 3*/(3+N) (5.17)

and deriving the ot i from several initial values (reasoned out independently) (N)j.

(Transposing (5.17) into a probability equation may ease the exercise.)

Example 4 Model (N;h,k~t,h)

In this model k is a fixed positive integer. It is not difficult to reason out that

(N)k+2 = p qk = (N)k..3 (N)2k+2 (5.18)

We assume that

(N)j = p 2qk(j-k-2) + o 1(N)ji + o' 2 (N)j_2 ++ Cak+2(N)j-k-2 (5.19)

Thus, for k = 1 we have (N) 3 = p2 q = (N) 4 and (N)j = P2qS(j-3) + o 1(N)j_ 1 +

12 (N)j- 2 + o13.(N)j_ 3. This equation is plausible since there are, as is easy to check,

three fork equations when k=1.

It is further easy to see that , = 1and c 2 ==Ok =0whenk>2by

comparing the (N)j from (5.18) with the (N)j computed from (5.19) for

j = k+2, k+3, ..., 2k+2. We furt&er find that
()2k+3 -- (1-pqk)(N)k+2 and (N)2k+4 = (1-pqk-p 2qk)(N) k 2  (5.20)

We get eventually

(N)j = p qkS(j-k-2) + (N)j_ 1 - pqk (N)-k-1 +pqk+ (N)j-k- 2  (5.21)
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which specifies the oq in (5.19). We note that the coefficients on the righthand side

sum to 1, as they should. The requirement that the coefficients on the left-hand side

and right-hand side sum to the same value follows from the term-by-term

correspondence with the omni-equation

2k(N)=p'qk (k+2) +*(I+N)) - pqk I(k+l+N) + pq k+l (k+2+N) (5.22)

by setting iI()=1.

Example 5 Model {N; k*h, l*t} We state the following equation for the model

{N;k*h,l*t} without derivation:

(N) =pkq' S-k-l) + (N) -. Pk q N)-k-l (5.23)

from which follow (cf Table 3.1)
*t(N) = pkq (k+/) + ,(I+N) - pkq/(kil+N) (5.24)

and

EzN=x pk q1  (5.25)
1z + pk q1 z k 

(2

When k=l=l then (5.23) is the same as (3.7) and our model is the familiar {N;ht}.

Note: Consider a string a of h's and t's in some order. Assume that in this string no

toss, except for the last one, can be a stopping toss whatever sequence of h's and t's

would precede a. Then (5.23), (5.24) and (5.2.5) are valid for {N; a) with k=# heads

A. in the string a and l=# tails in a.

Example 6 Target {hh or tt) .

Feller, p. 327, (8.2) derives a gf for the number of tosses, N, to reach a string of

r heads (event e,) or a string of p tails (event E2) whichever comes first. He also,

(8.6), derives gf's for the probabilities of "reaching e, in n tosses without hitting E2

first" and of "reaching e in n tosses without hitting el first."

We develop a set of fork-equations for the random vector (N,a) where a = 1, or

else 2, if the tossing results in event el, or else in, event e2; the random variables ah

and a t are conditioned upon having just tossed h or else t. Our example is modest in
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0C that we select tiny target strings but the method is indicated clearly. We add that the
forking method is applicable to more than two alternative events which, moreover, may
be strings otner than heads only or tails only. We can chouse, e.g.

el = hhtth, e2 - tthtt and e3 = hhhttt; and instead, or in addition to, N we can count

the number of doublets ht.

For the model {N;hh or tt} the fork-equations are

h

St (N,a) = p*(l+Nhah) + q*(l+Nt,at) (5.26)

[h)

h t *(Nh,ah) = p*(1,1) + q*t(l+Nt,at) (5.27)

It] 1(Nt,at) = P11(l+Nh,ah) + q,(1,2) (5.28) .S

Thus, along with (N,a) we analyze (Nh,ah) and (Nt,at); this is in the nature of the

furcation method. From (5.26), (5.27) and (5.28) we can derive the distribution and
the moments of interest. We can with ease transpose these equations into equations in

(H,T,a), (Hh,Th,ah) and (H t ,Tt,at). We can also derive, with some fair amount of

algebra, the uncoupled equations (5.29), (5.30) and (5.31):

11(N,a) = pq*(2+N,a) + p*1(2,1) + pq2*(3,2)

+ qp 2 *(3,1) + q 2 *(2,2) (5.29)

*t(Nhah) = pqh( 2+Nh,a h ) + p*(1,1) + q20(2,2) (5.30)

*(Nt,a t ) = pq*( 2 +Nt,a t ) + p 2 *(2,1) + q*(1,2) (5.31)

From (5.29), which is upright with respect to the N-argument, we get easily

(5.32):

*(H,T,a) = pq*(l+H,1+T,a) + p i(2,0,1) •,'-.

+ pq *(1,2,2) + qp *(2,1,1) + q2qt(0,2,2) (5.32)

We can do the same for (5.30) and (5.31), and we can likewise transpose (5.22), ..-

(5.23) and (5.24) each into a joint trivariate probability distribution. The interested

reader should have no difficulties doing it.

43



From (5.29) we find

*(a)q) (1)+ q2(1+P) i(2) (5.33) S
1-pq 1-pq

and hence

Pr(a=1) - p2(1+q) and Pr(a=2) q2(l+P) (5.34)
1-pq 1-pq
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